

工事概要

工事名 平成26年度主要県道下関美祢線 单独道路改良（県道•特）工事第2工区
橋梁名 奥山田橋（おくやまだはし）
工事場所 下関市 大字員光 地内
工事内容 橋台工（逆丁式橋台）2基
PC橋工（PC単純床版橋）1橋
コンクリート打設量 A1橋台：V＝169m3
A2橋台 ：V＝163m3
打設時期：1月～6月
コンクリート配合：27－8－20高炉B

A1橋台構造図

コンクリート構造物の品質確保の手法

【コンクリート構造物品質確保ガイド 2014】

1．類似事例の確認
コンクリート施工記録データより，過去施工の類似事例（構造物の種類•大き さ，コンクリート打設時期等）を確認し，対策方針を決定した。

v／

		120Hatam	（遇出家年）
กヌทด		10～11月	10～5月
tea	Mat	at	125
	\＃住	たで曻	たで戥
才泩	リフトス	2．3－2．54	
	\＃	L．30	1．00 $6=1<2.000$
	4	12.74	8．0n $<=18=18.50$
н＊	\＃ани		8 \％
	桭馬	0.085	\＆τ

コンクリート施工記録データ・••（財）山口県建設技術センターHPより

発注段階

2．対策方針
たて壁について，打継ぎ間隔による抑制対策 を行うとともに，補強鉄筋A＋B（鉄筋比 0.30 \％）を配置し，材料による抑制対策を行う。

（1）施工の基本事項の遵守（確実な施工実施の確認）

監督職員がコンクリート打設時に現場に臨場し，施工状況把握チェックシートを活用し ながら各施工段階において，基本的な作業項目が確実に行われているか把握を行った。

監督職員による施工状況把握

施工段階

（1）準備
打ち込み前の準備として，型枠内部に異物がないか等，目視にて確認 を行った。

型枠内部の異物除去

型枠内部溜り水除去

高圧洗浄機による型枠内清掃

型枠面，打継面の散水
（2）打込み

先送りモルタル排出状況

コンクリート打設高さ（鉄筋マーキング）

コンクリート打設高さ（鉄筋マーキング）

コンクリート打設高さ（型枠マーキング）

施工段階

打ち込み面までの高さ確認

図 3．2．1 打込み餧要図

打ち込み面までの高さ 1.5 m 以下

ブリーディング水除去

施工段階

（3）締固め
－上下層の一体化については，バイブレーター端から60cmの位置に表示テープを巻 くことにより，下層コンクリートに10cm程度挿入され締固めが適切に行われて いることを確認した。

マーキングテープ

施工段階

（4）養生

1 ）湿潤保温養生

- 湿潤養生期間はコンクリート標準示方書より12日間とした。
- コンクリート打設時期は冬期であるため，気温の低い時期に おける温度勾配に起因する温度ひび割れと，低温による強度発現の遅れが懸念されたことから，その対策として保温養生 マットを使用した。

2）コンクリート収縮低減剤による養生（施工業者の提案）
－初期の乾燥収縮の抑制効果を高めるため，脱枠後，塗布型収縮低減剤をコンクリート表面に塗布した。
－収縮低減剤を塗布することでコンクリート内部の相対湿度が高くなり，収縮ひずみ及び収縮速度を低減させることが可能 となることから，より高い養生効果を期待する。

湿潤保温養生

散 水

湿潤保温養生

脱枠後散水養生
（2）－1 打継ぎ間隔による抑制対策
○河川区域内での施工は非出水期での施工となるため，コンクリート打設は 1月～4月の期間で行った。（A2橋台胸壁は6月）
○発注段階では，打継ぎ間隔を「15日程度以下」と計画していたが，施工計画上，第2リフト及び胸壁は15日程度以下で施工できなかった。

打設場所	打設䈯所	打設曰	打設量 （m3）	打継間隔
A1橋台	底版	1 月16曰	52.0	－
	たて壁第1リフト	1月27曰	49.0	$11 \boxminus$
	たて壁第てリフト・胸壁	3月26曰	68.0	58日＊1
A2橋台	底版	2月2曰	55.5	－
	たて壁第1リフト	2月17曰	32.5	15曰
	たて壁第2リフト	4月9曰	72.0	$51 \square^{* 1}$
	胸壁	6月20曰	3.4	72曰※2

※1 河川区域内施工のため，たて壁第1リフト施工後，護岸復旧工事を施工，完了した後たて壁第2リフトの施工を行ったため。 ※2 たて壁第2リフトにてひび割れが発生し，その観測に日数を要したため。またPC橋桁架設完了後胸壁を施工したため。

施工段階

（2）－2 補強鉄筋によるひび割れ抑制
補強鉄筋配筋状況

補強鉄筋A（リフト下端への補強鉄筋）

外部拘束応力は拘束体に近い部分が大きくな ることから，ひび割れは基部付近から発生す る。
したがってこの部分に集中的に補強筋を配置 することで，ひび割れを抑制する。

補強鉄筋B（表面付近への補強鉄筋）

部材中心部に比べ表面付近の応力が大きくな る。
よって配力筋量を増やし表面に発生するひび割れを抑制する。

ひび割れ調査及び発生状況

－脱枠時および週1回以上の頻度でひび割れ調査を行い，ひび割れ調査票にて記録を行った。

①底版：ひび割れなし
（2）たて壁第1リフト：ひび割れなし
（3）たて壁第2リフト：ひび割れ発生
ひび割れ幅＝0．04～0．10mm
ひび割れ発生（発見）時期＝打設後12日～15日 ひび割れ観察期間 $=4$ 週間
観察期間 4週間後，有害なひび割れ
（ 0.15 mm 以上）への進行は認められなかった。 （4）胸壁：ひび割れなし

調査状況

○当現場では，以上のひび割れ抑制対策を実施し橋台の施工を完了した。
○ひび割れは発生したが，いずれもひび割れ幅を0．15mm未満 に抑えることが出来た。

その他の取り組み

○山口県官学共同研究メンバーによる施工状況把握と目視評価の実施
（平成27年1月）

○沖縄県の産学官関係者による視察（平成27年6月）

おわりに

長期間にわたり使用する公共土木施設の耐久性能は，その コンクリートの品質が大きく影響します。

品質を確保するためには，施工の基本事項の遵守や材料等 による適切な対策を実施することが非常に重要なものです。「コンクリート構造物品質確保ガイド」を参考とし，発注者として必要な技術を学ぶとともに，発注者，受注者，材料供給者が協働して取り組み，後世に長く使用される構造物を造ることが発注者としての責務だと考えます。

ご清聴ありがとうございました。

