畑ワサビのNFT育苗技術

畑ワサビは、自然流下式のNFT[※]育苗技術により安定した夏越し育苗が可能となる。セルトレイの床土としてはピートモスを主体とした育苗培地を用いることで、生育および根鉢形成に優れた苗となる。

成果の内容

- 1 NFT 育苗システム
- (1) 豊富な水源のある山間地においては、高低差を利用した自然流下式 NFT 育苗システムを利用することで、水温や培地温が低く保たれ、極めて安定した畑ワサビの夏越し育苗ができる(図1、2)。
- (2) NFT 育苗は、底面給水方式より潅水管理が省力化されるとともに、立枯れ病の発生が少なく、慣行と比較して生育(草丈、苗重)も優れている。
- (3) 初期設置コストは底面給水方式と同等で、NFT は底面給水マット交換が不要なので、 ランニングコストが安い(表1)。
- 2 NFT に適した培地
- (1) NFT 育苗は根がポット外に出やすいため、根鉢が崩れやすいという欠点があるが、 床土として「園芸用ポット苗箱育苗培土(商品名:アシスト培土タイプS:みのる産 業株式会社)」を利用することで、根鉢形成に優れた苗になる(図3)。
- (2) 本培地は、他の培地と比較して、pF1.2までは体積含水率が高く、それ以上では低下する特性がある。NFT 育苗は pF1.2以下の水分条件であるため、本培地の体積含水率が高く、新鮮な水が継続的に供給されやすい状況となっている(図4)
 - * Nutrient film technique

勾配をつけた育苗ベンチにフィルムを張り、養液を流して葉菜類等を栽培する技術

成果の活用面・利用上の留意事項

- 1 水源は、苗床との高低差(3 m以上)があり、夏期でも最高水温25℃以下が望ましい。
- 2 NFT 育苗した場合、上流と下流で生育差が発生するため、苗の配置替えを適宜行うと 生育が揃いやすい。
- 3 地上部が旺盛に生育した場合は、定植時に下葉除去(本葉2枚程度)して定植する。

具体的なデータ

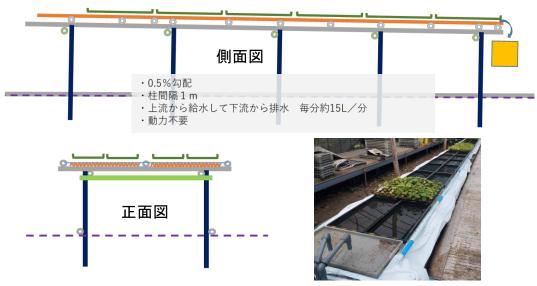


図1 NFT 育苗システム

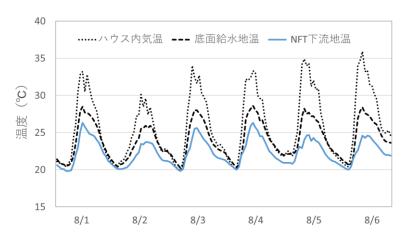


図2 栽培システムによる培地温および表面温度の違い

左図:令3年8月1~6日にセル成型苗の培地温とハウス内気温を測定

右図: 令4年6月17日に赤外線サーモカメラ「testo875」で測定

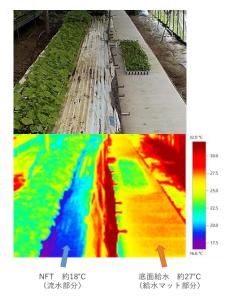


表 1 コスト試算 (20m×4 列、苗箱約 120 枚、本ぽ 20a 相当)

① NFT	
部材名称	合計 円
農ビ用パイプ 7列 (1列5本)	27,930
農ビ用パイプ(直管A)	13,440
農ビ用パイプ (直管B)	4,788
農ビ用パイプ(直管C)足	8,400
農ビ用パイプ 支柱として使う	798
クロス金具	20,640
ポリカーボ波板	31,920
大型とい (排水)	4,280
大型とい 止まり	630
大型とい 自在ドレン丸型	1,180
塩ビパイプ	548
POフィルム	8,560
フィルム止め (パッカー)	2,000
育苗箱中成苗用 上流水受け	200

農ビ用パイプ 6列(1列52	*
----------------	----------

75

② 低風稲水がり流し	
部材名称	合計 円
農ビ用パイプ 6列 (1列5本)	23,940
農ビ用パイプ(直管A)	5,586
農ビ用パイプ (直管B)	6,384
農ビ用パイプ(直管C)足	8,400
農ビ用パイプ(直管D)といを安定	8,400
農ビ用パイプ 支柱として使う	798
クロス金具	12,900
育苗箱中成苗用(ジャムガード下に置く)	13,200
給水とい(20型) (養鶏給水とい)	18,000
給水とい(20型)止り といエンド	660
給水とい(20型)継ぎ手	1,650
給水とい (20型) 落とし	220
塩ビパイプ	548
P0フィルム	8,560
底面給水マット	20,000
育苗箱を固定するバンド・紐等	1,000

125,314

130,246

● 与作N150(慣行)

70 ●アシストS 65 体積 55 水 50 45 % 40 35 30 0.6 0.8 1.4 1.6 рF

図3 培地と根鉢形成程度

左: アシストS、中: ANS、右: 与作 N150

培地のpFと体積含水率の関係 100ml コア使用、矢印はセル底面給水時の水分状態

研究年度	令和3年~令和5年(2021年~2023年)
研究課題名	夏期の異常高温に対応した畑ワサビ育苗技術の確立
担当	農林業技術部農業技術研究室 重藤祐司、茗荷谷紀文
	農林業技術部環境技術研究室 有吉真知子