令和 2 年度放射線監視事業調査結果 (第 4·四半期)

- 1. 調査機関 環境政策課、環境保健センター
- 2. 調査期間 令和3年1月~令和3年3月
- 3. 調査項目 空間放射線量率及び環境試料中の放射能
- 4. 調査方法 原子力規制庁放射能測定法シリーズ
- 5. 測定機器 低線量率計、高線量率計、可搬型モニタリングポスト、ゲルマニウム半導体核種 分析装置、ダストモニタ及びヨウ素モニタ
 - ※ 低線量率の測定に適した NaI (T1)シンチレーション検出器と高線量率の測定 に適した電離箱検出器を併用して測定。

6. 調査結果

(1) 空間放射線量率

空間放射線量率は、表2のとおりであった。

(2) 環境試料中の放射性物質の濃度の測定

ア 2α 、全 β 放射能

大気浮遊じん中の全 α 、全 β 放射能は、表3のとおりであった。また、6時間集じん及び計測した試料について、集じん直後と集じん終了6時間後の全 α 、全 β 放射能は、表4のとおりであった。

イ 放射性ヨウ素の濃度

大気中の放射性ヨウ素の濃度は、表5のとおりであった。

ウ γ線放出核種の濃度

2月24日に採取した環境試料のγ線放出核種の濃度は表6のとおりであった。

エ Sr-90、H-3、Pu-238、Pu-239+240の濃度

8月12日に採取した環境試料のSr-90等の濃度は表7から9のとおりであった。

表1 環境試料中の放射性物質の濃度の測定装置と測定方法

ア 全α、自	ὲβ放射能					
	ダストモニタ					
測定装置	日立アロカメディカル MODEL ACE-1459U4					
	ZnS(Ag)プラスチックシンチレータ					
	集じん方式	平面方式				
	集じん面積	約 50 mm φ				
測定方法	吸引流量	約 200 L/分				
	集じん・計測時間	6 時間				
		ただし、ろ紙交換時には集じん・計測時間を変更する。				
イ 放射性ミ	日ウ素の濃度					

	ヨウ素モニタ	
測定装置	日立アロカメディカノ	レ MODEL ASM-1454U3
	2" φ×2" NaI(T1) S	ンンチレーション検出器
	捕集方式	ガス状のヨウ素を捕集
		粒子状物質はプレフィルターで除去
	使用捕集材	TEDA 添着活性炭カートリッジ
加拿十沙		$ ext{CHC-50} \phi 60$
測定方法		TEDA 添着活性炭フィルター
		CP-20 φ 60
	吸引流量	約 50 L/分
	集じん・計測時間	6 時間
ウ γ線放出	出核種の濃度	
	ゲルマニウム半導体権	食出器
測定装置	検出器 キャンベラミ	ジャパン GC4018
	測定器 キャンベラミ	ジャパン DSA-1000
	測定容器	U-8 容器
	測定時間	80,000 秒
	試料形態	大気浮遊じん・・灰化物
測定方法		土壌・・乾燥細土
		陸水・・蒸発残留物
		海水 ・ ・ リンモリブデン酸アンモニウムー二酸化マンガン共沈法による沈殿物
		海底土・・乾燥細土

表 2 空間放射線量率

₩ U P.	1 時間値(nGy/h)					
検出器		1月	2月	3 月	第 4·四半期	
瓜始县 泰弘	最高	57	63	70	70	
低線量率計 NaI(T1)	最低	31	31	31	31	
	平均	33	34	33	34	
高線量率計	最高	94	100	106	106	
	最低	69	69	68	68	
電離箱	平均	71	72	72	72	

表 2 空間放射線量率

検出器	1 分間値 (nGy/h)				
快山砧		1月	2月	3 月	第 4 · 四半期

可搬型	最高	-	57	-	57
モニタリングポスト	最低	-	49	1	49
エーグリンクホ スト	平均	_	53	_	_

※稼働時間 2/24 11:45~12:59

表 3 大気浮遊じん中の全α、全β放射能(1時間値)

		1月	2 月	3 月	第 4·四半期
全α放射能	最高	0.78	2.8	3.6	3. 6
(Bq/m^3)	最低	0.016	0.0031	0.020	0. 016
全β放射能	最高	2. 4	8. 4	12	12
(Bq/m^3)	最低	0.048	0.084	0.056	0. 048
全β/全α放射能比	最高	3. 7	3. 4	3. 5	3. 7
	最低	2.6	2. 6	2.6	2. 6

表 4 大気浮遊じんの集じん直後、集じん終了後 6 時間の全α、全β放射能 (1 分間値)

		捕集回数	平均大気 吸引量(m³)	平均	測定値の範囲
全α放射能	直後	360		0. 47	0.075~5.0
(Bq/m^3)	6 時間後	358		0. 10	0.016~4.2
全 β 放射能 直後 (Bq/m³) 6 時間後	直後	360	75. 2	1. 4	0.26~14
	6 時間後	358		0. 27	0.045~13
全β/全α放射能比(集じん直後)		360		3. 0	2.5~4.0

表 5 大気中の放射性ヨウ素の濃度(1分間値)

捕集回数	平均空気吸引量 (m³/回)	平均(Bq/m³)
9	17. 1	N. D.

表 6 環境試料中のγ線放出核種の濃度

	採取期間 採取日	I-131	Cs-134	Cs-137	Cs-137 の 検出下限値	単位
大気浮遊じん	2020/10/1~12/31	N. D.	N. D.	N. D.	0.0011	${ m mBq/m^3}$
土壌	2021/2/24	N. D.	N. D.	0.80	0. 49	Bq/kg 乾土
上坡		N. D.	N. D.	16	9. 5	${ m MBq/km^2}$
陸水	2021/2/24	N. D.	N. D.	N. D.	0.00040	Bq/L
海水	2021/2/24	N. D.	N. D.	0.0015	0.00056	Bq/L

海底土	2021/2/24	N. D.	N. D.	1. 1	0. 53	Bq/kg 乾土
-----	-----------	-------	-------	------	-------	----------

表 7 環境試料中の Sr-90 の濃度

	採取日	Sr-90	検出下限値	単位
土壌	2020/8/12	N. D.	0. 12	Bq/kg 乾土
陸水	2020/8/12	0.00040	0.00014	Bq/L

表 8 環境試料中の H-3 の濃度

	採取日	H-3	検出下限値	単位
陸水	2020/8/12	0. 21	0.03	D /I
海水	2020/8/12	0.07	0.02	Bq/L

表 9 環境試料中の Pu-238、Pu-239+240 の濃度

	採取日	Pu-238		Pu-239+240		単位	
	1木4以口	濃度	検出下限値	濃度	検出下限値	十14.	
土壌	2020/8/12	N. D.	0.009	0. 013	0.010	Bq/kg 乾土	

7. 調査結果の評価

「平常時モニタリングについて(原子力災害対策指針補足参考資料)」に基づいて評価を行った。測定開始時からの測定値を基に算出した令和2年度の平常の変動幅は、表10、11のとおりで、この値を超過したデータについて評価を行った。

表 10 空間放射線量率の平常の変動幅

測定項目		平常の変動幅	測定開始年月	
空間放射線量率	1 時間値	24.2~46.0 nGy/h	2013年4月	

表 11 環境試料中の放射性物質の濃度の平常の変動幅

測定項目		平常の変	測定開始年月	
大気浮遊じん	全β/全α放射能比(1時間値)	1.8~4.1		2014年4月
	全α放射能(1時間値)	0.3~6400	${\rm mBq/m^3}$	"
	全β放射能(1時間値)	0.7~20000	${ m mBq/m^3}$	II
	Cs-137	N. D. ∼0. 0012	${ m mBq/m^3}$	II
土壌	Cs-137	N. D. ∼1. 6	Bq/kg 乾土	2014年1月
	CS-137	N. D. ∼45	$\mathrm{MBq}/\mathrm{km}^2$	
陸水	Cs-137	N. D.	Bq/L	II.

海水	Cs-137	0.0014~0.0034	Bq/L	"
海底土	Cs-137	0.79~1.5	Bq/kg 乾土	II

(1) 空間放射線量率

平常の変動幅を超過した1時間値は今期9回あった。該当の時間のうち最も空間放射線量率が高かった10分間値を、表12に示す。これらの時間帯のどのスペクトルも、人工放射性核種のピークは認められず、ラドンを起源とする天然放射性核種のピークが認められており、降雨もしくは感雨が観測されている。このことから、平常の変動幅の超過は、降雨が原因と考えられた。参考に、今期最高値と最低値を観測した時間帯のスペクトルを図1に示す。

表 12 平常の変動幅を超過したデータ

		八島測定局				愛媛県九町越局※1(参考)				
		低線量 率計	高線量 率計	風向	風速	雨量	線量率	風向	風速	雨量
日	時	nGy/h	nGy/h		m/s	mm	nSv/h		m/s	mm
1/23	16:40	52. 6	88.8	NE	10.5	0. 0*2	28	NNW	6. 5	0.0
1/24	5:40	58. 7	94.8	NNE	1.9	0.5	48	NNW	5. 5	1.0
1/26	20:10	60. 7	97. 5	W	0.9	0.5	45	NE	3. 2	1.0
2/2	3:50	62. 0	97.0	SSW	2.4	0. 0*2	43	NW	3. 7	0.0
2/17	18:20	68. 7	104.4	W	11.8	0.0*2	18	NW	5. 6	0.0
2/26	3:50	52. 4	88.3	NE	11.6	0.0*2	28	N	3. 6	0.5
3/2	8:50	63. 9	97.3	NW	5. 2	0.5	31	NNW	6. 1	0.0
3/12	13:40	51. 4	87.6	ESE	3.2	0.5	38	WNW	0.9	0.5
3/28	13:10	71. 7	106.7	W	7.8	1.0	36	SSE	5. 7	0.5

^{※1} 放射線モニタリング情報(http://radioactivity.nsr.go.jp/map/ja/)より転記

^{※2} 感雨あり

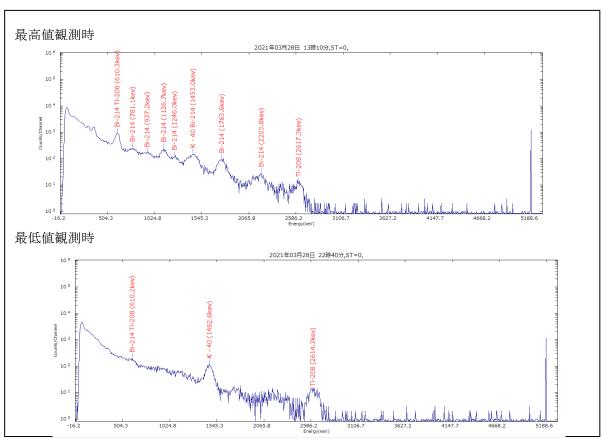


図1 平常の変動幅を超過した時の代表スペクトル

(2) 環境試料中の放射性物質の濃度

ア 2α 、 2β 放射能

平常の変動幅を超過した測定値はなかった。

イ γ線放出核種の濃度

平常の変動幅を超過した測定値はなかった。

8. 問合わせ先

本調査結果の内容に関するお問い合わせは、山口県環境政策課 (TEL:083-933-3034)にお願いします。