平成 29 年度放射線監視事業調査結果 (第4・四半期)

- 1. 調査機関 環境政策課、環境保健センター
- 2. 調査期間 平成30年1月~平成30年3月
- 3. 調査項目 空間放射線量率及び環境試料中の放射能
- 4. 調査方法 文部科学省放射能測定シリーズ 17『連続モニタによる環境 γ 線測定 法』に準拠
- 5. 測定機器 低線量率計、高線量率計、可搬型モニタリングポスト、ゲルマニウム 半導体核種分析装置、ダストモニタ及びヨウ素モニタ
 - ※ 低線量率の測定に適した NaI (T1)シンチレーション検出器と高線量率の測定 に適した電離箱検出器を併用して測定。

6. 調査結果

(1) 空間放射線量率

上関町八島の平成30年1月~3月の空間放射線量率調査結果を表1に示す。

表 1	空間放射線量率
<i>T</i> Y 1	子 IEI //X 外 形 里 学

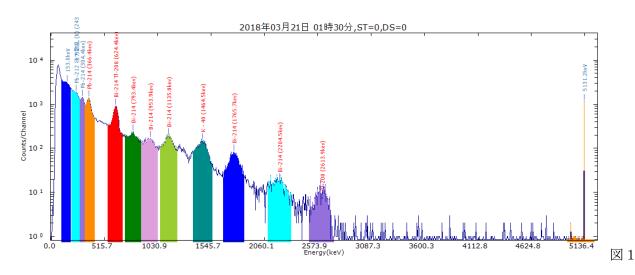
区分			(参考)				
		1月	2 月	3 月	可搬型 MP**	第 4・	H28 第 4・
						四半期	四半期
低線量率計	最高値	56	47	64	54	64	63
	最低值	32	32	31	48	31	32
	平均值	34	34	34	51	34	34
(参考) 高線量率計***	最高値	92	84	99		99	100
	最低值	69	70	69		69	70
	平均值	72	72	73		72	72

^{*} 測定値は、1時間平均値の最高、最低、平均値を示す。

NaI(T1)、電離箱検出器はともに局舎屋上に設置してあり、検出器の地上高は 4.4m である。一方、可搬型 MP のそれは 1m であり、可搬型 MP は大地からの放射線の影響を受け、局舎屋上より高めの数値となっている。

平常の変動幅「平成 25 年度から 28 年度の平均値±標準偏差の 3 倍」を逸脱した時間は今期 12 回あった。(表 2 : スペクトルは 10 分毎に測定しているため、10 分値での測定値を記載)

代表として、今期の最高値と最低値の時のスペクトルを図 1、図 2 に示す。表 2 のどの事象においても、自然放射性核種(ラドン・トロン子孫核種)による線量率の上昇は見られたが、人工放射性核種の影響は見られず、変動幅からの逸脱は自然放射線の変動による影響と考えられた。


^{**} 可搬型 MP は 2 月 15 日 12:35~13:03 の測定値。

^{***}高線量率計は宇宙線も測定するため、平常時においては、低線量率計よりも高い値を示す。

表 2 空間放射線量率 (「平均値+標準偏差の3倍」*を超えたもの)

			(参考)			
日	時	低線量率計	高線量率計	風向	風速	雨量
		nGy/h	nGy/h		m/s	mm/d
1/5	4:30	48. 9	84.2	WNW	2. 7	6.5
1/8	4:20	49. 4	86.3	ENE	3. 5	11.5
1/10	20:20	49. 7	84. 1	W	9. 5	5.0
1/17	1:10	47. 9	84. 3	NE	6. 5	11.0
1/22	10:50	57. 5	94. 5	NE	5. 3	8.0
3/5	18:40	55. 5	91. 2	NE	3. 9	32.0
3/8	14:30	49. 6	86.7	Е	3. 2	13.0
3/16	12:40	57. 6	94. 2	NE	8. 0	20. 5
3/19	18:40	50.8	87. 2	ESE	4. 5	13.0
3/20	19:50	63.0	97. 7	ENE	13. 4	2.0
3/21	1:30	64. 5	99. 4	ENE	10. 2	13. 5
3/21	16:20	53. 6	92. 1	NE	4. 0	13. 5

^{*} 平成 25 年度から平成 28 年度の平均値と標準偏差を使用し計算した結果、24.0~48.0nGy/h となった。

平成30年3月21日 1:30 64.5nGy/h (最高値時のスペクトル)

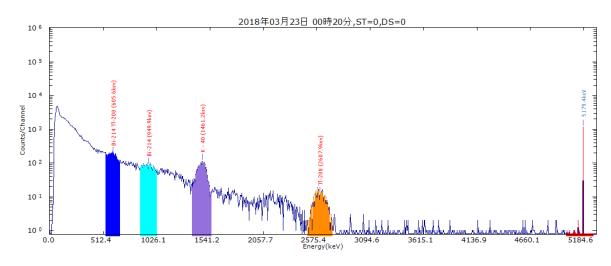


図2 平成30年3月23日 0:20 30.9nGy/h (最小値時のスペクトル)

(参考)

自然放射性核種(天然に存在するもの。K-40以外はラドンの娘核種)

K-40, Pb-212, T1-208, Pb-214, Bi-214

人工放射性核種

I-131 (364keV), Cs-134 (605keV), Cs-137 (662keV)

(2) 環境試料中の放射能

環境試料の核種分析結果を表3に示す。

表 3 核種分析結果

試 料	採取日	測定結果			W. II.	<参考>
		I-131	Cs-134	Cs-137	単位	平成 25~28 年度の変 動幅(Cs-137)
大気 浮遊じん	$10/1$ $\sim 12/31$	N. D.	N. D.	N. D.	mBq/m^3	N. D. ∼0. 0012
水道水	2/15	N. D.	N. D.	N. D.	Bq/L	N. D.
土壤	2/15	N. D.	N. D.	N. D.	Bq/kg 乾土	N. D. ∼1. 6
海水	2/15	N. D.	N. D.	0.0014	Bq/L	0.0015~0.0034
海底土	2/15	N. D.	N. D.	1.5	Bq/kg 乾土	0.86~1.5

[※] 検出下限値未満は、N.D. とした。

海水、海底土から Cs-137 の人工放射性核種が検出されたが、その濃度は平常の変動幅内であった。

ダスト・ヨウ素モニタによる環境試料中の放射能測定結果を表 4、表 5 に示す。

表 4 環境試料中の放射能

測定項目	技 集同粉	空気吸引量*	平均值	測定値の範囲
侧处填口	捕集回数	(m ³ /回)	(Bq/m^3)	$(\mathrm{Bq/m^3})$
大気中放射性ヨウ素	10	18.8	N. D.	N. D.
集じん直後の全α放射能	384		0.62	0.12~3.3
集じん終了6時間後の全α放射能	375		0. 13	0.022~2.0
集じん直後の全β放射能	384	71. 4	1.8	0.35~5.5
集じん終了6時間後の全β放射能	375		0.36	0.063~6.0
全β/全α放射能比(集じん直後)	384		2.9	2.5~3.8

^{*} 大気中放射性ヨウ素はヨウ素サンプラーで 6 時間採取、全 α ・ β 放射能はダストサンプラーで 6 時間捕集した。

検出下限値未満は、N.D. とした。

表 5 環境試料中の放射能(1時間値)

		1月	2月	3月	第 4·四半期
全β/全α放射能比	最高	3. 1	3. 3	3. 4	3. 4
至 ρ / 主 α 放剂 能比	最低	2.5	2.5	2.5	2.5
全α放射能	最高	1.3	3. 1	1.2	3. 1
$(\mathrm{Bq/m^3})$	最低	0.016	0.035	0.015	0.015
全β放射能	最高	3. 5	9. 5	3. 7	9. 5
$(\mathrm{Bq/m^3})$	最低	0.048	0. 087	0.045	0.045

全 β/α 放射能比、 α 放射能と β 放射能の変動幅(平成 26 年度から 28 年度のデータで算出した 1 時間値、1.8 ~4.1、0.0003~2.7 Bq/m³、0.0007~8.7Bq/m³を使用)を超えるものについて調査した。

変動幅を超えた時間帯の測定値を表6に示す。

表 6 全 β/α 放射能比、 α 放射能と β 放射能の変動幅を超えたもの

日	採取時間帯	全 β/α 放射能	α 放射能	β 放射能
		比	$(\mathrm{Bq/m^3})$	$(\mathrm{Bq/m^3})$
2/15	15:00~16:00	3. 1	3. 1	9. 5

2月15日に変動幅を超える時間帯が1回あった。この日はろ紙を回収した日で、通常6時間採取を1時間採取に変えた時であった。2月15日15時から16時までの測定値を図3に、この採取時間帯の空間放射線量率を図4に示す。

全 β / α 放射能比はほぼ一定であり、2014 年度から 2016 年度の全 β / α 放射能比の変動幅内に収まっている。この図からわかるように全 α ・全 β 放射能ともに徐々に減衰しており、全 β / α 放射能比もほぼ一定である。人工放射性核種(131I や 137Cs など)が存在する場合にはこのような急激な減衰は見られないことと、図 4 にみられるように空間放射線量率の上昇もなく、しきい値 47.5 nGy/h を下回っていることから、この α 放射能と β 放射能の高濃度事象は自然放射性核種によるものと考えられる。

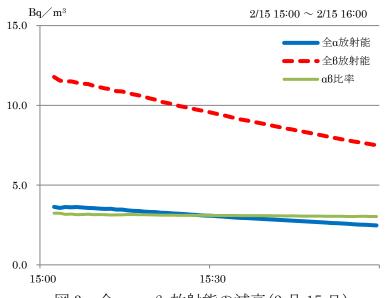


図 3 全 α ・ β 放射能の減衰(2月15日)

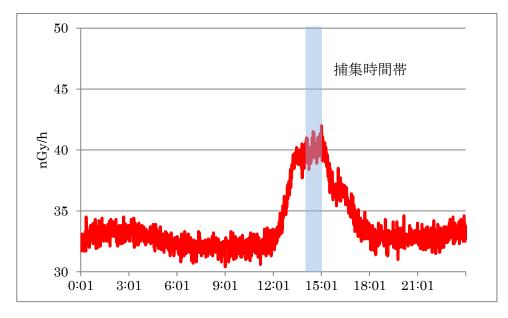


図4 空間放射線量率(2月15日)

7. 問合わせ先

本調査結果の内容に関するお問い合わせは、山口県環境政策課(TEL:083-933-3034)にお願いします。