生コンクリート製造工場による 脱炭素化・CNへの取組み

山口小野田レミコン株式会社 営業部 技術担当

玉井 強

低炭素型コンクリートの概要

■低炭素型コンクリートとは

低炭素型コンクリート

又は<u>これと同等以上</u>のCO2排出削減効果のあるもの

セメントの種類を工夫する

副産物・廃棄物の利用

新しい製造技術による低炭素化

ライフサイクル全体での削減

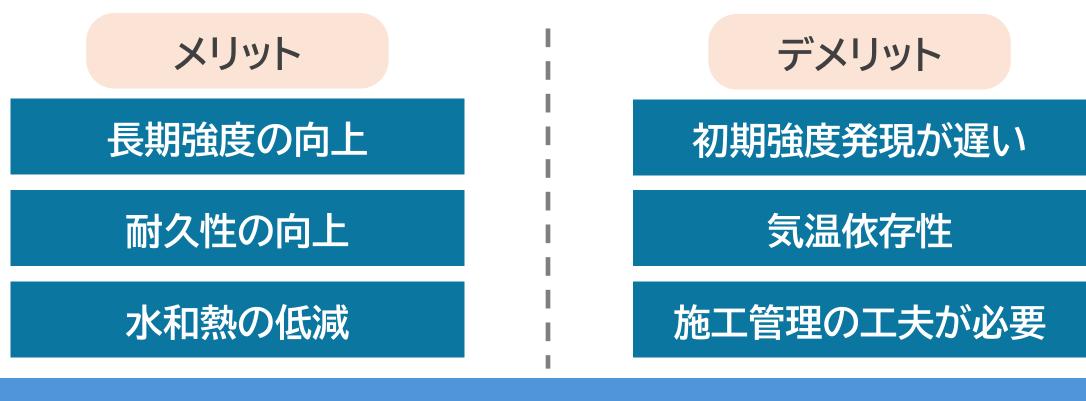
置換率 55 % 以上で製造時のCO2排出量が約 50 % 削減

■低炭素型コンクリート試行工事ポイント

低炭素型コンクリートの取組みが広い地域に普及

·全国 17 道府県で 51 件、約 11,000 ㎡ 実施(令和6年末時点)

中国 5 県の実績


広島県で 5 件、岡山県で 2 件(令和6年末時点)

全国実績のほとんどが高炉スラグ微粉末置換のプレキャスト

- ・プレキャスト 49 件、現場打ち 2 件
- ・高炉スラグ微粉末置換 50 件
- ・高炉スラグ微粉末とフライアッシュの混合置換 1 件

■低炭素型コンクリートの構造的影響

副産物置換による強度発現・耐久性の特徴

- ・初期強度は劣るが、長期強度・耐久性はむしろ改善される
- ・施工管理と設計思想次第で十分実用的

湿式炭酸化法による生コンスラッジの 有効活用に関する実験的研究

山口小野田レミコン株式会社

〇玉井 強

北村 耕平

太平洋セメント株式会社 中央研究所 石井 祐輔 石田 征男

太平洋セメント株式会社 中国支店

髙橋 悠

■はじめに 【戻りコンから生じる残渣の処理】

2023年度

国内生コン出荷量:約7,018万 ㎡以上

戻りコン発生率*1:約 1.6%

(戻りコン発生量*2: 100万 ㎡以上)

処理

スラッジ水 スラッジ脱水ケーキ 回収骨材…etc

路盤改良材 埋立処分

資源循環のため、スラッジ水等の有効利用が望まれる

2024年度

JIS A 5308 改正

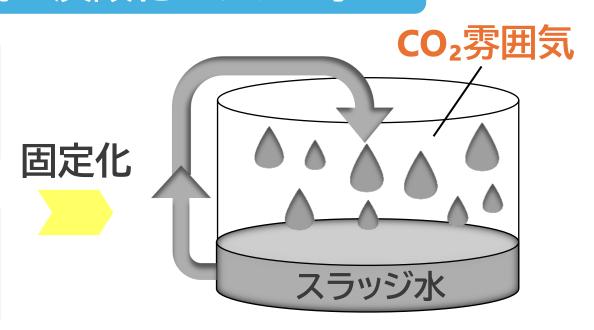
スラッジ固形分率の上限 安定剤の使用で 3 % ⇒ 6 % に緩和

- ・安定剤による品質制御
- ・コンクリートの硬化への影響を把握

- *1:全国生コンクリート工業組合連合会
- *2:国土交通省総合政策局:残コン・戻りコンの発生抑制,有効利用に関するアンケート調査の結果概要

■はじめに『スラッジ水の有効利用への期待』

スラッジ水


セメント水和物を多く含有⇒CO₂を吸収できる材料

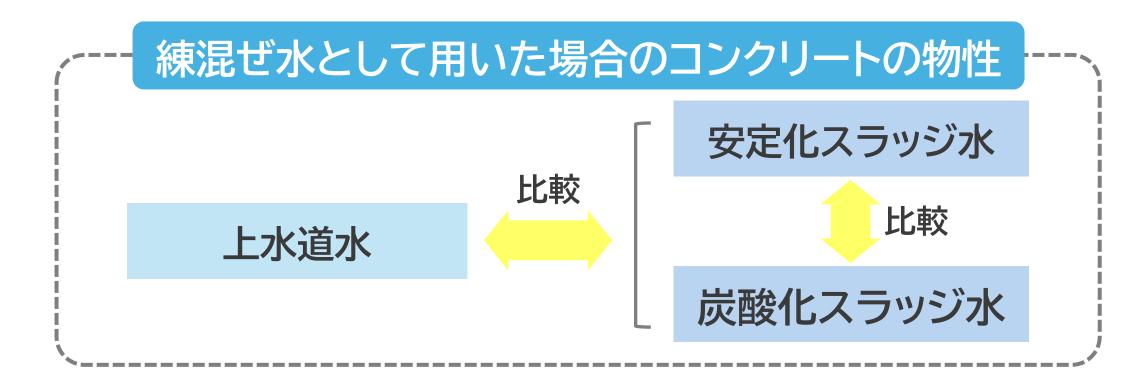
湿式炭酸化技術で炭酸化スラッジ水へ

脱水ケーキを微粉砕後、 加水により得たスラッジ水

+

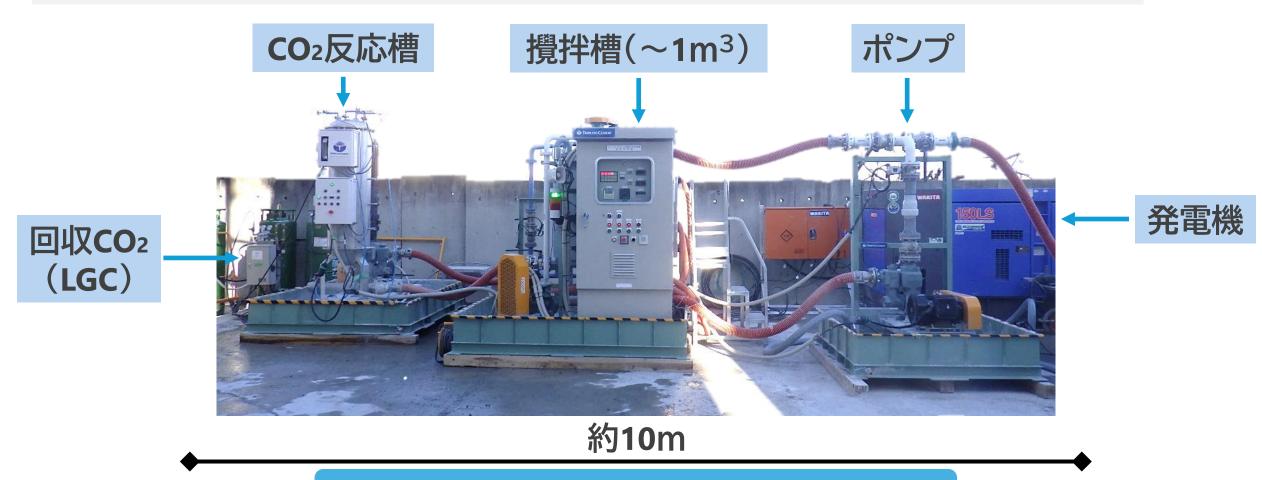
セメントキルン排ガスから 分離・回収したCO2

- ◎ 主成分が炭酸カルシウムであり硬化しない
- ◎ 安定剤による制御が不要、品質の安定化が図れる可能性
- ◎ コンクリートのCO2排出原単位を削減

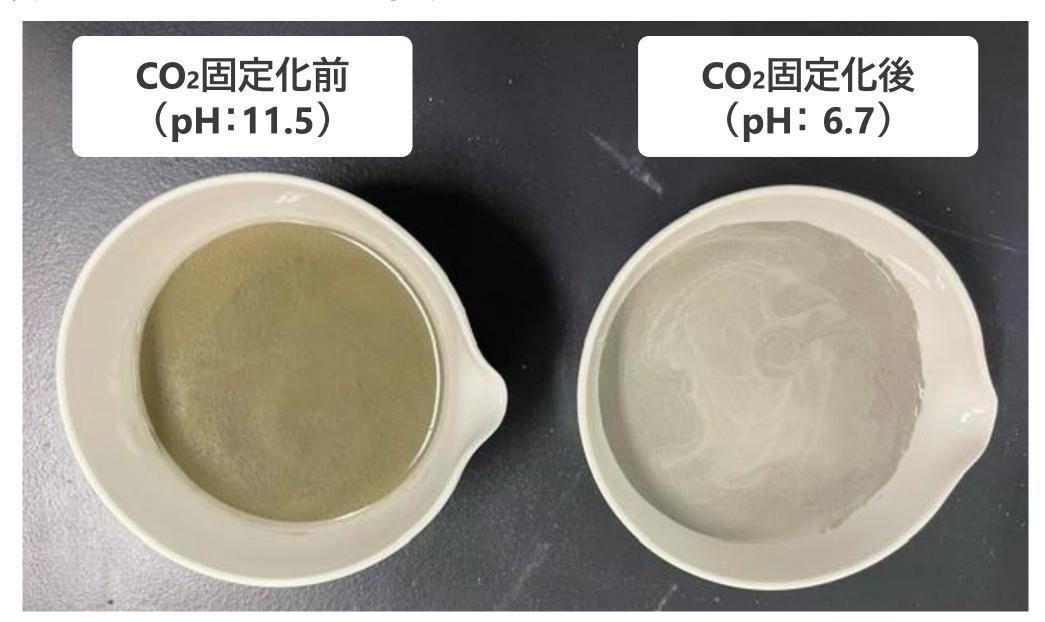

炭酸化スラッジ水

舗装コンクリートへの適用事例あり

安定剤による制御が不要で品質の安定化が図れる?


標準的に用いられる配合で適用可能か?

■カーボキャッチ®モバイルの全体像


可搬式のCO2吸収設備

コンクリートプラントにCO2を持込み、排出されたスラッジにその場でCO2を吸収可能

24 時間で1 工場分のスラッジ処理が可能

■炭酸化スラッジ水の外観

■使用材料

材 料	種 類·名 称	記号	密度(g/cm)
水	上水道水	W	1.00
炭酸化スラッジ固形分	(固形分率を調整し、練混ぜ水として使用)	CS	2.50*
安定化スラッジ固形分	(固形分率を調整し、練混ぜ水として使用)	SL	3.07*
セメント	普通ポルトランドセメント	С	3.16
⋌⋒ ₊⊑₹ ↓	砕砂(細目) 石灰岩	S1	2.66
細骨材	砕砂(粗目) 石灰岩	S2	2.66
亦口 '庄' 千十	砕石(1505) 硬質砂岩	G1	2.74
粗骨材	砕石(2010) 硬質砂岩	G2	2.74
	AE減水剤(標準形)	AD	_
混和剤	AE減水剤(遅延形)	ADR	_
	空気量調整剤	AE	_
安定剤	オキシカルボン酸系化合物	_	_

^{*105℃}環境下で恒量まで乾燥した試料に対して測定

■配合条件

項	目	区分					
記	号	PL	PL CS S				
練混ぜ水		上水道水 炭酸化スラッジ		安定化スラッジ水			
固形分率(%)		_	3.6.10	6			
AE減水剤	標準形(AD)	0	0	0			
	遅延形(ADR)	_	0	_			

CSシリーズに関しては、AE減水剤(遅延形)も使用

配合の一例

炭酸化スラッジ水、固形分率 6 %、遅延形 ⇒ CS6-ADR

■コンクリートの配合

建築物件に多く適用されている配合を参考

試験の環境温度: 20 ℃

配合名	W/C (%	s/a											
)	(%)	W	CS	SL	С	S1	S2	G1	G2			
PL-AD			180	_	_	327	547	364	360	541			
CS3-ADR			180	10	_	327	543	362	358	538			
CS6-AD	F.F.	55			51	180	20	_	327	540	360	356	535
CS6-ADR	33	31	180	20	_	327	540	360	356	535			
CS10-ADR						180	33	_	327	536	357	354	530
SL6-AD			180	_	20	327	541	361	357	536			

スラッジ水の固形分はセメントの外割置換として設定

練混ぜ直後の目標値

スランプ <u>18±2.5</u> cm、空気量 <u>4.5±1.5</u> %

■コンクリートの試験項目および方法

試験項目	試験方法	配合評価
スランプ	JIS A 1101	全配合
空気量	JIS A 1128	全配合
圧縮強度	JIS A 1108	全配合
ブリーディング	JIS A 1123 附属書A	PL-AD, CS6-ADR, SL6-AD
凝結時間	JIS A 1147	PL-AD, CS6-ADR, SL6-AD

スランプ・空気量

経時変化を練混ぜ直後、静置 30、60、90 分測定

圧縮強度

材齢 3、7、28 日を 9 本採取

ブリーディング

小型容器を使用

実験結果と考察

■炭酸化スラッジ水と安定化スラッジ水の固形分

作製した両スラッジ水を静置して保管

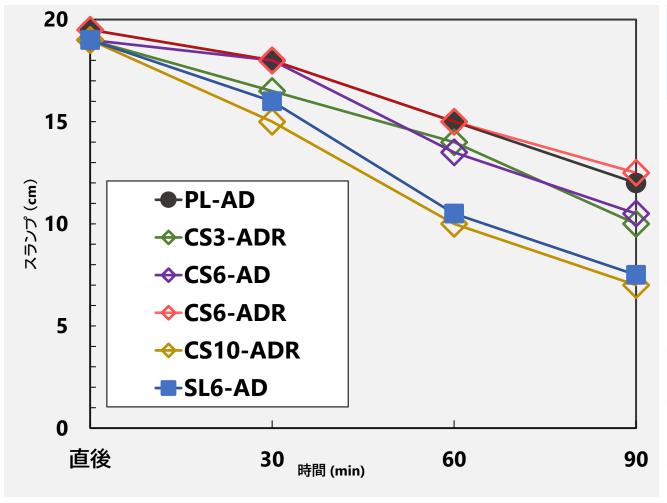
保管の環境温度: 20 ℃

安定化スラッジ水

模擬スラッジ水を作製し、接水から2時間、使用するまでの期間を1日とした標準量の安定剤を添加

期限後は沈降した固形分が硬化

炭酸化スラッジ水

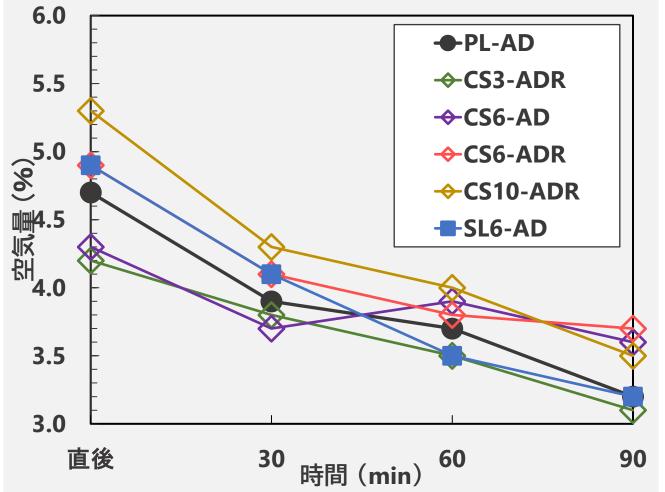

固形分は沈降したものの… 数か月は硬化せず

再撹拌で使用可能

本実験

製造から約1か月保管した炭酸化スラッジ水を使用

■スランプ試験(経時変化)

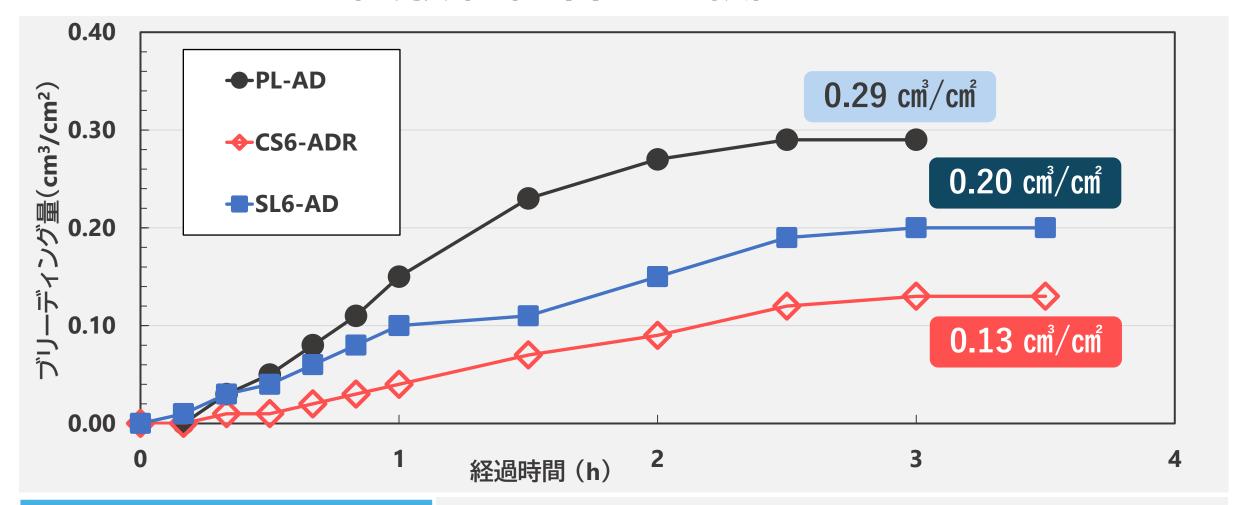

配合名	AE減水剤	経時変化(分·cm)						
	(c ×%)	直	30	60	90			
PL-AD	0.30	19.5	18.0	15.0	12.0			
CS3-ADR	0.45*	19.0	16.5	14.0	10.0			
CS6-AD	0.55	19.0	18.0	13.5	10.5			
CS6-ADR	0.65*	19.5	18.5	15.0	12.5			
CS10-ADR	0.95*	19.0	15.0	10.0	7.0			
SL6-AD	0.35	19.0	16.0	10.5	7.5			

*AE減水剤(遅延形)使用

CS固形分が 6 %までの使用であれば、混和剤の種類や添加量の調整でPLに近いフレッシュ性状を得ることが可能

14/28

■空気量試験(経時変化)



而]	AE剤	経時変化(分・%)						
配合名	(C×%)	直	30	60	90			
PL-AD	0.0025	4.7	3.9	3.7	3.2			
CS3-ADR	0.0030*	4.2	3.8	3.5	3.1			
CS6-AD	0.0040	4.3	3.7	3.9	3.6			
CS6-ADR	0.0045*	4.9	4.1	3.8	3.7			
CS10-ADR	0.0065*	5.3	4.3	4.0	3.5			
SL6-AD	0.0030	4.9	4.1	3.5	3.2			

*AE減水剤(遅延形)使用

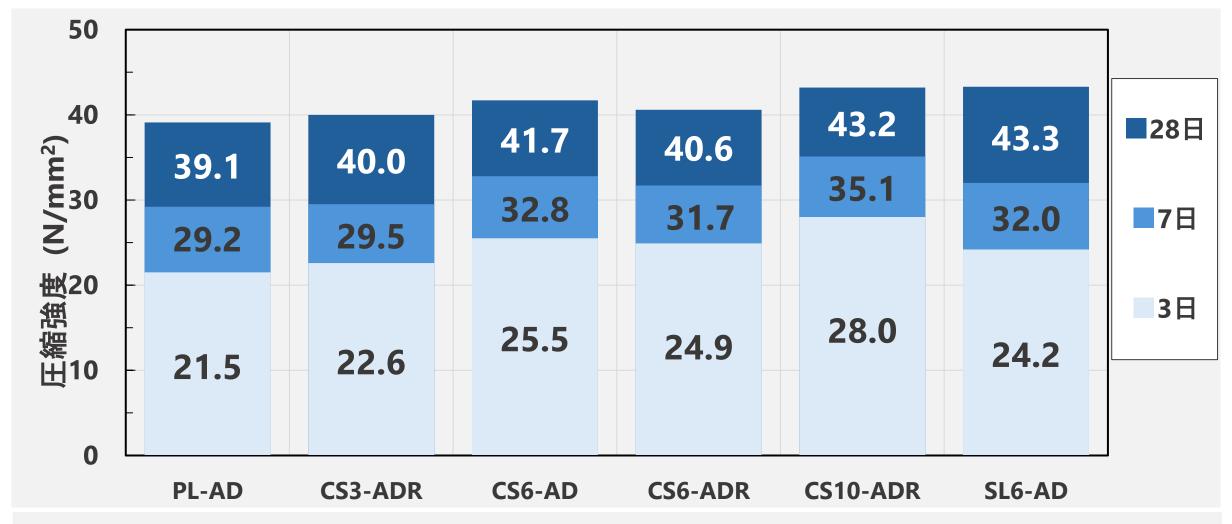
混和剤の添加量の調整でPLに近いフレッシュ性状を得ることが可能

■ブリーディング試験(3配合の比較)

ブリーディング抑制効果

CS > SL(微細な炭酸カルシウムの影響の可能性)

◎CSまたはSLを使用することでブリーディング量が抑制された


16/28

|凝結時間試験(3配合の比較)

始発時間は全配合で同程度、終結時間はPLとCS6が同じであった

■圧縮強度試験(材齢 3, 7, 28日)

炭酸化スラッジ水の固形分は、炭酸カルシウム、未水和のクリンカ鉱物などが混在していることから、混合量が増えるほど強度増進に寄与したと推察される

■各配合におけるコンクリートのCO₂排出量

CSのCO₂排出原単位は-170kg/tと算出

高]	W/C (%)		単位量(kg/㎡)								CO2排出量/削減量			
配合名			W	CS	SL	C	S1	S2	G1	G2	(kg-CO2/m³)			
PL-AD			180	_	-	327	547	364	360	541	257			
CS3-ADR	55 51			180	10	-	327	543	362	358	538	255 (-1.7)		
CS6-AD		E 1	180	20	-	327	540	360	356	535	253 (-3.4)			
CS6-ADR		55	31	180	20	-	327	540	360	356	535	253 (-3.4)		
CS10-ADR								180	33	-	327	536	357	354
SL6-AD			180	_	20	327	541	361	357	536	257 (0)			

CO2排出量算出

例)CS6-ADR

 $CS(20) \times -170 + SL(0) \times 0 + C(327) \times 766.6 + S(900) \times 3.7 + G(891) \times 2.9 \div 1000 = 253$

本研究で得られた成果は以下のとおり

- 1)炭酸化スラッジ水を静置して保管した結果、固形分は沈降するものの、<u>数</u>か月間硬化せず、再撹拌することで練混ぜ水として使用できることを確認した
- 2)フレッシュコンクリートの性状について、練混ぜ水中の炭酸化スラッジ水の<u>固形分率が 6 %までであれば混和剤の種類や添加量の調整</u>で上水道水使用に近いフレッシュ性状を得ることが確認できた
- 3)炭酸化スラッジ水を使用したコンクリートの<u>圧縮強度は、上水道水を使用した場合よりも大きく、炭酸化スラッジ水の固形分率が大きいほど大き</u>くなった

本研究で得られた成果は以下のとおり

- 4)炭酸化スラッジ水を使用したコンクリートのブリーディング量は、上水道 水を使用した場合よりも少なくなった
- 5)炭酸化スラッジ水を使用したコンクリートの凝結時間は、上水道水を使用した場合と同程度に調整可能であった

6)炭酸化スラッジ固形分 1 tあたりのCO₂吸収量は 170 kgであり、炭酸化スラッジ水を練混ぜ水としたコンクリートのCO₂削減量は、固形分が 3 %の場合は 1.7 kg/㎡、6 %の場合は 3.4 kg/㎡、10%の場合は 5.6 kg/㎡、と試算された

山口県内低炭素型コンクリート出荷事例

低炭素型自己充填コンクリート によるトンネル覆工工事

一般的な覆エコンクリート 21-15-20BB

- ・作業員の負担「大きい」
- ・有能作業員の技量・経験"依存"

◎覆工施工の省力・人化, 品質確保

◎環境負荷低減の取組み

自己充填コンクリート

CO₂排出量削減を推進

自己充填コンクリートを圧入施工

CO2排出量の低い結合材に置換

自己充填覆工構築システム

フライアッシュを活用

低炭素型自己充填性コンクリートの適用

■工事概要

項目	内容
発注者	国土交通省 中国地方整備局
施工者	佐藤工業株式会社
工事名	令和4年度俵山・豊田道路第1トンネル工事
施工時期※	2024年 7月 15日~10月 11日
打設箇所	覆エコンクリート
山井旱※	総出荷量: 3,133.5 ㎡
出荷量※	1FA130: 2,866.8 m, 2FA110: 266.7 m

※低炭素型コンクリートの製造出荷のみ記載

■自己充填コンクリートの仕様および使用材料

呼び強度 (N/mm [*])	水セメント比(%)	単位セメント量 (kg/m³)	空気量 (%)	セメントの 種類	高性能AE減水剤 の種類
18	60以下	270以上	4.5±1.5	高炉B	標準形

使用材料	種類•製品名
水	地下水
セメント	高炉セメント B種
混和材	フライアッシュ II種 (エコパウダー)
細骨材	石灰砕砂(砕砂(細目),砕砂(粗目))
粗骨材	安山岩(砕石2005, 砕石2005)
>⊟ 1 ⊓ ★Ⅱ	高性能AE減水剤 標準形(マスターグレニウム SP8SV)
混和剤	AE剤 (マスターエア 202)

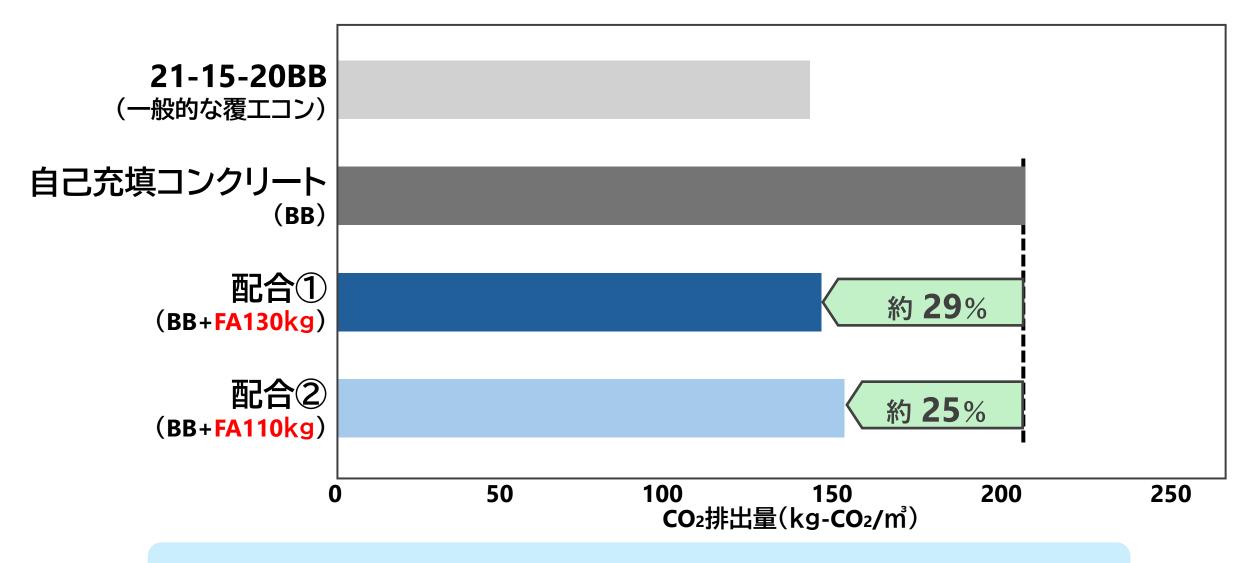
■低炭素型自己充填コンクリートの配合

	Gmax	W/C	S/a (%)	単位量(kg/㎡)						
	(mm)	(%)		W	С	FA	S	G		
配合① (BB+FA130kg)	20	58.9	49.9	165	280	130	425	601		
配合② (BB+FA110kg)	20	55.0	50.1	165	300	110	427	601		
一般的な覆エコン (21-15-20BB)	20	62.5	48.4	172	273	_	451	564		

※適用区間における配合区分として,配合①,②の2種類を設定

スランプフローの目標値

 60 ± 10 cm


空気量の目標値

4.5 ±1.5%

■写真

■CO2排出量の比較

CO2排出量が一般的な覆工配合と同程度となった

■低炭素型コンクリートの出荷を希望される場合

- 山口県内で実績のある低炭素型コンクリート
- □高炉セメント C 種を用いたコンクリート
- □混和材料としてフライアッシュを用いたコンクリート
- □混和材料として高炉スラグ微粉末* を用いたコンクリート
 - * 50 %置換のため、厳密には環境配慮型コンクリート

お願い

低炭素型コンクリートの計画にあたっては、工場設備や出荷・材料の都合がありますので、事前に出荷予定のプラントへご確認ください

ご清聴ありがとうございました