アレルゲンを含む特定原材料「小麦」の検査方法の検討

山口県環境保健センター

仙代 真知子・辻本 智美・山根 泉*1・増井 陽介*2・藤井 千津子・田中 和男 *1現 生活衛生課 *2現 薬務課

Examination of the Method for Detection of Wheat as an Allergenic Substance in Food

Machiko SENDAI, Tomomi TSUJIMOTO, Izumi YAMANE^{*1}, Yousuke MASUI^{*2}, Chizuko FUJII, Kazuo TANAKA

Yamaguchi Prefectural Institute of Public Health and Environment

*1 Environmental Health Division *2 Pharmaceutical Division

はじめに

小麦は,食物アレルギーを引き起こす食品であることから「特定原材料」として定められ,小麦を含む食品は,その表示を義務付けられている.表示を検証するための検査法¹⁾(以下,「通知法」という.)は,「判断樹」(図1)に従い,スクリーニング(定量)検査で陽性(タンパク含量が10ppm以上)の場合,確認検査をすることとされている.スクリーニング検査結果及び確認(定性)検査結果等の組合せで行政措置の要不要が判断される.当センターにおいて,スクリーニング検査が陽性,確認検査が陰性となった例があったこと,他の検査機関において,確認検査で検知不能となる例が報告されていることから,確認検査方法の検討を行った.

調査方法

(1) モデル食品の調製とスクリーニング検査

モデル食品は、当センターでスクリーニング検査が陽性、確認検査が陰性となったよもぎ大福とした. 抽出条件や PCR 条件の比較で結果に差が出るか判定する必要があるため、 $0\sim20\,\mathrm{ppm}$ 程度の小麦タンパクを含むよう調製し、スクリーニング検査を行った. (表 1)

表 1	モデル食品の調製					
材料	よもぎ (茹でたもの) 2 g					
	だんご粉(砂糖入り)5g					
	あんこ 10 g					
	水 34 g					
	小麦					
調製方法	①だんご粉、よもぎ、水、小麦(材料の全重量に					
	対して小麦タンパクが各濃度となるように添加)					
	を混合し、電子レンジで加熱する					
	②あんこと混合し、均一化する					
	各濃度:0,1,5,10,20 ppm (ただし,小麦タン					
	パクは小麦重量の 10%として計算)					

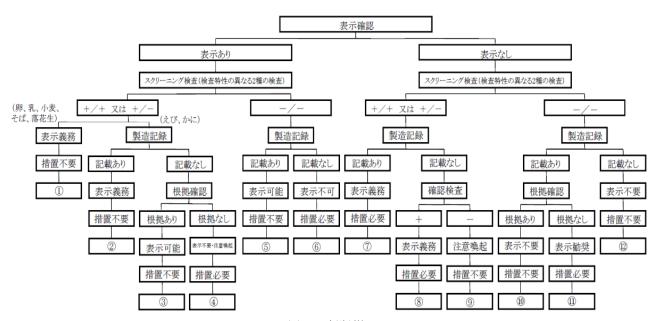


図1 判断樹

(2) 抽出条件の検討

最も品質のよい DNA を得るため,通知法に示された DNA 抽出精製法 (シリカゲル膜タイプキット法,イオン交換樹脂タイプキット法, CTAB 法) を比較した.

(3) PCR 条件の検討

イオン交換樹脂タイプキット法を用いてモデル 食品(小麦タンパク $0,1,10~\mu g/g$)から DNA 抽出を 行い,得られた DNA 試料液について,プライマーの 種類(「通知法」,「PRP プライマー法」及び「ネ ステッド PCR 法」)と濃度について比較した.

ア 通知法

PCR 反応液は、1 x PCR 緩衝液、0.20 mM dNTP,

1.5 mM 塩化マグネシウム, 0.2 μM F 及び R primer,

及び 0.625 units Taq DNA ポリメラーゼを含む液に, $20 \text{ ng/}\mu\text{L}$ に調製した DNA 試料液 $2.5 \text{ }\mu\text{L}$ (DNA として 50 ng) を加え,滅菌水で全量を $25 \text{ }\mu\text{L}$ とした. プライマー濃度は, 0.2 (通知法で示された濃度), 0.5 及び $0.7 \text{ }\mu\text{M}$ について検討した.

PCR 反応条件及びプライマー対を示す. (表 2,表 3)

表 2 PCR 条件

°C	min
95	10
95	0.5]
60	0.5 - 40 cycle 0.5
72	0. 5
72	7
4	∞

表 3	プライマー対
F primer (Wtr01-5')	5'-CAT CAC AAT CAA CTT ATG GTG G-3'
R primer (Wtr10-3')	5'-TTT GGG AGT TGA GAC GGG TTA-3'
※増幅長	141bp

イ PRP プライマー法

PRP プライマーとは、遺伝子組換えコムギの検査 法²⁾ で用いられるコムギ陽性対照試験用プライマーの代替プライマーで、小麦に特異性があり、「通知法」よりも増幅長が短いため、PCR の反応性向上を期待して選択した. (表 4)

PCR 反応液及び PCR 反応条件は通知法と同一とした. プライマー濃度は,「ア 通知法」で示したそれぞれの濃度について検討した. プライマー対を示す. (表 4)

表 4	プライマー対				
F primer(PRP8F)	5' -GCA CCC ATG ATG AGT ACT ATT CTG TA-3'				
R primer(PRPds6R)	5' -TGC AAA CGA ATA AAA GCA TGT G-3'				
※増幅長	117bp				

ウ ネステッド PCR 法

ネステッド PCR 法は、連続した 2 回の PCR により、検出感度と反応特異性が高められる方法で、小麦の検出感度を向上させることが報告されている $^{3)}$. 当センターの三浦ら $^{4)}$ の方法に従い、 1 stPCR の反応液、条件及びプライマー対は、通知法と同一とした. 2 ndPCR 反応液は、 1 x PCR 緩衝液、 0.20 mM dNTP、 1.8 mM 塩化マグネシウム、 0.4 μ M F 及び R primer,及び 1.25 units Taq DNA ポリメラーゼを含む液に、 1 stPCR の反応液を TE で 200 倍希釈した DNA 試料液 2.5 μ L を加え、滅菌水で全量を 25 μ L とした. 2 ndPCR 条件及びプライマー対を示す. (表 5 、 6)

表 5	PCR 条件
°C	min
95	2
95	0.5]
60	0.5 - 20 cycle
72	0. 5
72	7
4	∞

表 6	プライマー対
F primer (Wtr01NE2-5')	5'-TGG TGG TTG GAA TGG TTT AGA-3'
R primer (Wtr10NE5-3')	5'-GGC ACG CGG ATT GTA TAT GT-3'
※増幅長	97bp

結果

(1) モデル食品の調製とスクリーニング検査 小麦タンパクの濃度が,設定値に近いモデル食品 を得たため確認検査の検討に使用した. (表7)

表 7	スクリ-	ーニング	検査結果	:	
キット名	モデル食品の小麦設定濃度 (2併行平均)				
	0ppm	1ppm	5ppm	10ppm	20ppm
モリナガ FASPEK エ ライザⅡ	N. D.	1. 03	5. 02	10.00	18. 29
FASTKIT エライザ Ver.Ⅲ	N. D.	1. 50	6. 68	12. 24	21. 95

(2) 抽出条件の検討

当センターでは、様々な食品に対応するため、抽出方法は、CTAB 法を用いているが、よもぎ大福には、イオン交換樹脂タイプキット法が最適であるとわかった。いずれの方法も通知に示された精製度を

満たしていた. (表8)

表 8 抽出結果 精 製 度 操作 時間 方法 DNA 濃 度 シリカゲル膜タイプキット法 高い 満足 容易 短い イオン交換樹脂タイプキット法 最も高い 満足 やや容易 やや短い 満足 煩雑 長い CTAB 法 高い

(3) PCR 条件の検討

0及び1ppmの小麦タンパクを含むモデル食品は, 全ての方法で陰性であった.

10ppm の小麦タンパクを含むモデル食品において、「PRPプライマー法」及び「通知法」は、プライマー濃度 0.2 及び 0.5 μ M で使用した場合、同等の結果であった.「ネステッド PCR 法」では、PCR 増幅産物の確認が可能であった.「通知法」のプライマー濃度を 0.7 μ M にすると、「ネステッド PCR 法」と同等に検出した.

まとめ

抽出条件については、イオン交換樹脂タイプキット 法を選択することにより、品質のよい DNA 試料液が得 られることから、検知不能となる事例がなくなること が期待される. PCR条件については、検出感度と判定に要する時間から、「通知法」のプライマー濃度を変更する方法が望ましいと考えられた.

参考文献

- 1) 食品表示基準について (平成 27 年 3 月 30 日付け 消費者庁次長通知消食表第 139 号) 「別添 アレル ゲンを含む食品の検査方法」
- 2)「安全性未審査の組換え DNA 技術応用食品の検査方法について(平成24年11月16日食安発1116第3号)」Ⅱ. 個別検査方法・コムギ (MON71200, MON71100/71300, MON71700, MON71800)の検査方法
- 3)橋本博之,真壁祐樹,長谷川康行,佐二木順子,宮本文夫:ネステッドPCR法を用いた食品中の特定原材料(小麦)の検出,食品衛生学雑誌,49,23-30
- 4) 三浦泉,川崎加奈子,津田元彦,藤原美智子, 立野幸治:ネステッドPCRを用いたアレルギー対 応食品中の特定原材料(小麦)の検出について, 山口県環境保健センター所報,第52号,45-49