山口県における地下水の水質特性の把握

山口県環境保健センター 川上 千尋 山口大学大学院創成科学研究科 太田 岳洋

Characterization of Groundwater Quality in Yamaguchi prefecture

Chihiro KAWAKAMI^{*1}, Takehiro OHTA^{*2}

*¹Yamaguchi Prefectural Institute of Public Health and Environment *²The Graduate School of Science and Technology for Innovation, Yamaguchi University

はじめに

地下水は農業用水や飲用水として利用される等,生活 環境に密接に関わっており,地下水の環境保全は,県民 の健康の保護及び生活環境保全の面で重要である.

また,地下水には,周辺地質などの影響により種々の 溶存化学成分が含まれており,その特性は地域により異 なると考えられるが,その実態については明確にされて いない.

そこで,山口県内5地区について,2019年11月~2020 年8月に調査を実施し,水質特性の把握及び地下水成分 と地質との関係について考察したので報告する.

調査方法

1 調査地点

山口県内の地下水 40 地点を対象とした.37 地点は, 動力によりくみ上げられた地下水であり,3 地点は湧水 である.調査地点は図1及び表1のとおり.調査地点の 地質を構成する岩相及び地質年代については,国立研究 開発法人 産業技術総合研究所地質調査総合センターが 提供している20万分の1日本シームレス地質を用いて 確認した.なお,一部の調査地点については,井戸柱状 図や現地調査を元に井戸深度の地質(岩相)を確認した.

	地点名		住所	井戸深(m)	岩相	地質年代		
1		阿東1	山口市阿東地福上	浅井戸	堆積物	第四紀		
2		阿東2	山口市阿東徳佐中	浅井戸	堆積物	第四紀		
3		阿東3	山口市阿東徳佐上	7.8	堆積物	第四紀		
4	रन	阿東4	山口市阿東徳佐中	10.5	堆積物	第四紀		
5	門	阿東5	山口市阿東徳佐下	10.5	堆積物	第四紀		
6	来	阿東6	山口市阿東嘉年下	50	流紋岩	白亜紀		
7		阿東7	山口市阿東嘉年上	50	花崗岩	白亜紀		
8		阿東8	山口市阿東蔵目喜	71	安山岩質凝灰岩	白亜紀		
9		阿東9	山口市阿東生雲中	浅井戸	堆積物	第四紀		
10		阿東10	山口市阿東生雲東分	15	堆積物	第四紀		
11		阿東11	山口市阿東篠目	12	流紋岩	白亜紀		
12		萩1	萩市下田万	50.8	流紋岩質凝灰岩	白亜紀		
13		萩2	萩市下小川	65.7	流紋岩質凝灰岩	古第三紀		
14		萩3	萩市須佐高山	100	砂岩	新第三紀		
15		萩4	萩市高佐下	51	流紋岩質凝灰岩	白亜紀		
16		萩5	萩市高佐下	120	花崗岩	白亜紀		
17	秋	萩6	萩市高佐下	30	安山岩	白亜紀		
18	ru v	萩7	萩市吉部上	120	花崗岩	白亜紀		
19		萩8	萩市吉部下	32.8	花崗岩	白亜紀		
20		萩9	萩市明木	100	流紋岩質凝灰岩	白亜紀		
21		萩10	萩市明木	45	流紋岩質凝灰岩	白亜紀		
22		萩11	萩市明木	35	流紋岩質凝灰岩	白亜紀		
23		萩12	萩市三見	100	安山岩質凝灰岩	白亜紀		
24	相	相島1	萩市相島	80	安山岩	第四紀		
25	島	相島2	萩市相島	80	安山岩	第四紀		
26	地	相島3	萩市相島	浅井戸	安山岩	第四紀		
27	X	相島4	萩市相島	浅井戸	安山岩	第四紀		
28		阿武1	阿武町奈古	33	安山岩	白亜紀		
29		阿武2	阿武町奈古	10	堆積物	第四紀		
30	17-1	阿武3	阿武町奈古	20	堆積物	第四紀		
31	파	阿武4	阿武町宇田	70	花崗岩	白亜紀		
32	止し +	阿武5	阿武町宇生賀	84	流紋岩質凝灰岩	白亜紀		
33	ru IV	阿武6	阿武町宇生賀	116	流紋岩質凝灰岩	白亜紀		
34		阿武7*	阿武町宇生賀	-	玄武岩	第四紀		
35		阿武8*	阿武町福田上	-	堆積物	第四紀		
36	1	阿武9*	阿武町福田上	-	玄武岩	第四紀		
37	厚	厚狭1	山陽小野田市鴨庄	浅井戸	堆積物	第四紀		
38	狭	厚狭2	山陽小野田市鴨庄	浅井戸	堆積物	第四紀		
39	地	厚狭3	山陽小野田市山川	47	砂岩	白亜紀		
40	X	厚狭4	山陽小野田市山野井	40	砂岩	白亜紀		

*湧水

2 調査項目及び方法

調査項目は,水温,pH,電気伝導度(EC),総溶解固 形分 (TDS), 酸化還元電位 (ORP), イオン成分 (Na⁺, K⁺, Mg²⁺, Ca²⁺, F⁻, Cl⁻, NO₃⁻, SO₄²⁻, HCO₃⁻) 及び金属成分(B, Al 等 21 項目) である. 水温は温度計, pH はメーター (HORIBA: F-71), EC は電気伝導度計(HORIBA: ES-12), TDS はペン型測定器 (As one: MPC70) で測定した. ORP は ORP メーター (HORIBA : D-73) で測定した値に,水 温を用いて標準水素電極を基準とした電位(Eh)に換算 したものを測定値とした. HCO3 を除くイオン成分はイ オンクロマトグラフ法 (Thermo Fisher Scientific: ICS-1600) で, HCO3 は硫酸滴定法 いにより求めた. なお, 相島地区 の陽イオンは, ICP-OES (Agilent Technologies : ICP-OES 5110) で測定した. 溶存態ケイ素 (DSi) を除く金属は, 試料 100ml に conc.硝酸 5ml を加え保存処理を行った試 料約 10ml を密栓容器に入れ, 100℃で1時間加熱した. 測定は, ICP-MS (Agilent: ICP-MS 7500ce) を用いた. DSi はモリブデン青吸光光度法 2)により求めた.

結果及び考察

1 pH, EC, TDS 及び Eh

各調査地点の結果を表2に示す.pHは概ね7.0前後を示しており,最低値は萩8の5.9で,最高値は萩9の7.9

であった. EC 及び TDS については,相島地区で非常に 高く,阿東地区は,低い傾向であった.

阿東地区の EC 及び TDS が低い理由を地質的に考察す ると、阿東地区の大部分の井戸は、井戸深 10m 前後以浅 の浅井戸であり、岩相は第四紀完新世の堆積物である. そのため、上記井戸は地下での滞留時間が短く、水一岩 石反応が進んでいないと考えられた.一方、深度の大き い阿東 6、阿東 7、阿東 8 の周辺の岩相は流紋岩や花崗岩 であることから、主な鉱物である石英が水への溶解度が 低く、水一岩石反応が進行しにくいと考えられた.

2 イオン成分

各調査地点のヘキサダイアグラムを図2に、トリリニ アダイアグラムを図3に示す.

へキサダイアグラムでは,相島地区を除く大部分の地 点が Ca-HCO₃型を示した.相島は Mg-Cl型や Ca-Cl型 等,他地点とは異なる型を示し,ダイアグラムも大きい. 相島は,他地点と比較して,K⁺,Mg²⁺,Cl⁻,NO₃⁻,SO₄²⁻が高 濃度を示したが,これには海水の混入と施肥の影響の 2 つの理由が考えられる.相島は,島嶼のため地下水に海 水が混入している可能性がある.また,相島は島の面積 の約40%が農地として利用されており,スイカやさつま いもの栽培が盛んな水はけのよい土地である³⁾.そのた め,地下水が施肥の影響を受けている可能性が考えられる.

FC

TDS

Fh

		pН	EC	TDS	Eh	
	阿東1	6.8	90	59.6	413	
	阿東2	6.3	56	41.8	413	
	阿東3	6.2	65	45.1	433	
ित	阿東4	6.0	156	107	380	
西	阿東5	6.4	138	96.0	331	
宋	阿東6	6.8	129	85.6	431	
TU IV	阿東7	7.8	175	116	348	
	阿東8	7.6	161	115	415	
	阿東9	6.9	83	69.8	435	
	阿東10	6.6	89	59.5	428	
	阿東11	7.1	107	76.3	405	
	萩1	6.1	132	87.0	-	
	萩2	7.7	276	188	-	
	萩3	7.1	319	211	-	
	萩4	6.6	124	86.8	351	
志	萩5	6.9	149	106	325	
松	萩6	7.8	208	142	338	
J.C.	萩7	7.8	149	103	335	
	萩8	5.9	122	93.6	370	
	萩9	7.9	194	140	307	
	萩10	7.8	148	97.8	346	
	萩11	6.7	69	46.9	365	
	萩12	7.3	252	163	-	

表2 各調査地点の測定結果(pH, EC, TDS, Eh)

単位 EC:µS/cm, TDS:mg/L, Eh:mV

413	相	相島1	6.1	659	458	477
413	島	相島2	6.9	373	239	456
433	地	相島3	7.2	489	340	439
380	$\overline{\times}$	相島4	7.5	524	360	408
331		阿武1	7.7	317	228	372
431		阿武2	7.2	127	94.5	392
348	Rat	阿武3	6.9	146	89.9	389
415	랐	阿武4	6.8	159	109	409
435	地	阿武5	7.4	93	50.5	397
428	75	阿武6	6.6	68	48.0	391
405		阿武7	7.8	127	81.8	450
-		阿武8	7.7	139	85.7	417
-		阿武9	7.8	100	67.8	417
-	厚	厚狭1	6.9	209	144	436
351	狭	厚狭2	6.7	242	166	423
325	地	厚狭3	6.9	170	120	402
338	\mathbf{X}	厚狭4	7.0	161	114	306
335						

рΗ

-82-

図2 各調査地点のヘキサダイアグラム

図3 各調査地点のトリリニアダイアグラム

トリリニアダイアグラムは、プロットされる領域によ り、 I 型 (Ca-HCO3型, Mg-HCO3型)、 II型 (Ca-Cl型, Ca-SO4型), III型 (Na-Cl型, Na-SO4型), IV型 (Na-HCO3 型), V型 (中間型) に分類される.

厚狭地区の全てと阿東地区の大部分が、一般的な浅層 地下水のタイプであるⅠ型を示した.相島地区は、全地 点が主に熱水や化石水起源の地下水が示すⅡ型又はⅡ型 に近いV型を示した.相島は海水の混入と施肥の影響を 受けていると考えられ、海水の混入によるCl-及び施肥の 影響による Mg²⁺の割合が他地点と比較して高いことか ら、Ⅱ型又はⅡ型に近いV型を示したと考えられる.

萩1,萩8及び阿武4は、海水が混入した地下水が示 すⅢ型を示した.これらの地点のヘキサダアグラムを見 ると、小さく溶存成分量が少ないことがわかる.トリリ ニアダイアグラムは、陽イオン又は陰イオン濃度全体に 占める各イオン濃度の割合で位置が決まる.これらの地 点は、海水の影響を受けたわけではなく、陰イオン濃度 については、全体に占める CI-や SO4²⁻の割合が、陽イオ ン濃度については、全体に占める Na⁺の割合が相対的に 高くなったことから、Ⅲ型を示したと考えられる.

阿武6は滞留時間の長い深層地下水が示すⅣ型に近い V型を示した.阿武6は井戸深116mと深く,Na⁺の割 合が高い.地下水が移動する中で,停滞性の深層地下水 で起こる特徴の一つである,Ca²⁺とNa⁺間でのイオン置 換が行われていることが示唆される.

2 金属成分

各測定項目の濃度比較を表3及び図4示す.図4は各 金属元素の濃度を箱ひげ図で表しており、実線の上端は 最大値を、下端は最小値を、箱の下端は25パーセンタイ ル値を、上端は75パーセンタイル値を、箱の中の横棒

	DSi	Sr	В	Fe	Zn	AI	Cu	As	Rb	Mo	V	Mn	Pb	U	Со	Ni	Cr	Ge	Se	Sb	Cd
下限值	5	1	1	1	1	1	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.025	0.5	0.5	0.1	0.1	0.1	0.05	0.025
最大	25	325	228	8002	10	32	22.7	32.6	20.5	9.1	9.5	426.9	2.2	0.362	0.8	7.4	9.3	0.5	1.4	0.26	1.515
最小	5	10	3	< 1	< 1	<1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.025	<0.5	<0.5	<0.1	<0.1	<0.1	<0.05	<0.025
中央値	10	95	9	3	3	2	2.0	1.5	1.4	0.7	0.3	0.2	0.1	0.039	<0.5	<0.5	<0.1	<0.1	<0.1	<0.05	<0.025
検出率	100	100	100	87.5	72.5	70.0	75.0	95	97.5	87.5	87.5	60	60	62.5	2.5	30	40	2.5	32.5	47.5	12.5

表3 各測定金属の濃度比較

Si:mg/L それ以外:µg/L

図4 各測定金属の濃度比較

は中央値を示している. なお,中央値等の計算を行う際 に,調査結果が報告下限値未満のときは,対象項目に報 告下限値の 1/2 の値を代入して計算した.測定した地下 水中の金属濃度は溶存態ケイ素 (DSi) を除き概ね μ g/L レベルであった. Si は地殻中に最も多く含まれる金属元 素であり,全地点が 5 mg/L 以上と他元素に比べて高濃度 であった. 一方, Co, Ni, Cr, Ge, Se, Sb, Cd は中央値が定 量下限値以下と低かった.

なお, ICP-MS 法で測定できる金属成分のうち, 地下水 の環境基準が設定されている Cd, Pb, As, Se, B について, 基準を超過したのは As のみで, 超過地点数は1地点で あった. 5 つの金属成分 (Sr, B, As, V, Mn) については, 図 5 にヒストグラムを示し, 以下に詳細に考察した. 2-1 ストロンチウム (Sr)

Dsi に次いで、地下水中の濃度が高かった金属元素で

あり、100 μg/L以上を示した地点は18 地点と多い.(図 5) 相島の4地点,萩2,萩6が特に高濃度を示した.Sr と地質との関係を見ると,安山岩が高く,堆積岩や花崗 岩は低い傾向が見られた.(図 5)

また, Sr と Ca²⁺の関係を見ると, 正の相関が認められた. (図 6) Ca に富む鉱物として安山岩などの火成岩に 主に含まれている斜長石が考えられる. Ca と Sr の化学 的性質が似ているため, 鉱物中の Ca が Sr に置換してい

-85-

図5 各測定金属のヒストグラム

ることを示唆しており,水一岩石反応により Ca²⁺と Sr が溶出していると考えられた.

2-2 ほう素 (B)

1 μg/L~10 μg/Lを示した地点が 22 地点と最も多 いが, 10 μg/以上の地点も 18 地点と多かった. (図 5) 特に,相島地区,阿武 2 及び阿武 3 で高濃度を示し,安 山岩や堆積岩の一部に高い傾向が見られた.

地下水に存在する自然由来のBは、主に化石水の混入
 によると言われている⁴ことから、BとClの関係を見た.
 (図 7).相島地区においては、BとClには正の相関が

見られた.海水中のBとClは,正比例する4ことから, 相島地区は海水の影響によりBが高濃度であると考えら える.地下水の揚水により,海水と淡水の境界(塩淡境 界)が上昇することで,地下水に海水が混入したか,又 は海水に富む雨水が地下に浸透し,地下水に混入した可 能性が考えられる.

阿武2及び阿武3は、Cl-が相島地区ほど高濃度ではないものの、Bは相島地区より高濃度であった.この2地 点は汽水域の同じ河川沿いに位置し、岩相は堆積岩である.堆積時に海水中のBが粘土鉱物に吸着し、その後陸

-86-

化したため、堆積物は淡水の地下水で満たされる.しか し、地下水の揚水により海水が淡水域まで侵入し、地下 水の塩分濃度が上昇することで B が脱着している⁴⁾可能 性が考えらえる.

2-3 ヒ素 (As)

40 地点中 1 μ g/L 以上が 24 地点と全体の 60%を占め ており,中央値も1.45 μ g/L と比較的高い濃度となった. (表 3, 図 5) 最高値は阿東 11 の 32.6 μ g/L で,地下水 環境基準(10 μ g/L)を超過していた.なお高濃度を示 した地点に地質的な特徴は見られなかった.

地質からの As の溶出には, pH や酸化還元状態が関与 すると考えらえることから, As と pH 及び Eh の関係を 見た. (図 8) As が 2 μ g/L 以上の地点において, pH は 2 地点を除いて, 中性からわずかにアルカリ側であった. Eh については, 傾向は見られなかった.

As が地質から溶出する機構として, 水酸化鉄に吸着し ていた As が還元的な塩基性下において脱着する場合や, 黄鉄鉱に含まれる As が酸化環境下において, 黄鉄鉱の 酸化分解とともに地下水に溶出する場合などが考えられ ている⁵⁾. pH はやや傾向はみられたものの, Eh に傾向 は見られず, 今回の調査結果からも, 地点ごとに As が 地質から溶出する機構が異なることが推察できる.

なお,最高値を示した阿東 11 は,井戸深 12 m と浅く, 井戸の岩相は,流紋岩である.また,As 以外にも,アン チモン (Sb),ウラン (U) が他地点と比較して高濃度で あった.(Sb:0.23 μ g/L,U:0.362 μ g/L).As,Sb や U が高濃度であることに加え,柱状図や地形等から判断し て,流紋岩が熱水による変質作用を受けている可能性が 考えられた.

図8 As と pH 及び Eh の関係

2-4 バナジウム (V)

40 地点中 1 μg/L 以上が 26 地点と多く,最高値は 萩12の9.5 μg/Lであった.Vが1 μg/L以上の地点は, 井戸の岩相が安山岩・玄武岩が多く,地域別に見ると, 相島地区,阿武 7,阿武 8 に高い傾向が見られた.Vは 玄武岩や安山岩の岩石の含有量が高く ⁰,水一岩石反応 により,地下水中のVも高い濃度を示したと考えられる.

相島地区は、Rb も高濃度であったことから、V と Rb の関係を見た.(図 9)相島地区の4地点及び阿武 7 は V、 Rb ともに高濃度を示した.一方、萩 12 は V に対して Rb は 0.4 μ g/L と低く、阿武 8 は 2.4 μ g/L と中程度であっ た.萩 12 に対して、相島地区、阿武 7 及び阿武 8 の Rb 濃度が高い理由について考察すると、相島地区、阿武 7 及び阿武 8 は、アルカリ玄武岩やカルクアルカリ安山岩 から構成されている阿武単成火山群 10 に相当する.これ らの岩石は K、Rb に富む 18 .また、V は一般的に玄武 岩などの塩基性岩に多く含まれている.以上のことから、 V と Rb 濃度が高いこれらの地点では、これらの玄武岩 や安山岩の影響を受けた水質を示していると考えられる.

図9 VとRb濃度の関係

2-5 マンガン (Mn)

40 地点中 1 μg/L 以下が 31 地点と大部分を占めてい るが,濃度分布は<0.1 μg/L~426.9 μg/L と広い. 100 μg/L 以上の高濃度を示した地点が 2 地点(萩 3,厚狭 4) あり,最も高濃度であったのは,厚狭 4 の 426.9 μg/L で あった. これらの地点の地質的な特徴を見ると,萩 3, 厚狭 4 はそれぞれ,新第三紀中新世,白亜紀の堆積岩の 分布域に当たる.

地質からの Mn の溶出には,酸化還元電位が関与する と考えられることから, Mn と pH 及び Eh の関係を見た.

図 10 Mn と pH 及び Eh の関係

(図 10) Mn が 10 μg/L以上の地点は, pH が中性から わずかに酸性側にあり, Eh は, 400 mV 以下と低濃度地 点と比較して低い傾向であったことから,酸性かつ還元 環境下で Mn が溶脱した可能性が示唆された.

また, Mn は Fe と化学的性質が似ていることから, Mn と Fe の関係を見た(図 11). Fe, Mn ともに高濃度の地 点(厚狭 4, 萩 3, 阿東 4, 阿東 5)や Mn に対して Fe が 高濃度の地点(萩 4, 萩 5, 阿武 3), Fe に対して Mn が 高濃度の地点(萩 2, 萩 8)が見られた. Mn, Fe ともに 高濃度の地点の4地点(厚狭 4, 萩 3, 阿東 4, 阿東 5) の岩相は,堆積岩あるいは砂岩であり,その要因を考察 した.

図 11 Mn と Fe の関係

萩3及び厚狭4は、それぞれ新第三紀中新世、白亜紀 の砂岩の分布域にあたるが、周辺に磁鉄鉱を含む火山岩 が分布していることから、これらを流下した地下水に磁 鉄鉱の分解により Fe や Mn が溶出した可能性が考えら れる.

阿東4及び阿東5は、第四紀完新世の堆積物が分布す る、河川沿いに位置している.堆積時に生物の活動が想 定され、生物の活動により鉄などが凝集したFeやMnに 富むノジュール(濃集沈殿物)が形成されている可能性 がある⁹.これらのFeやMnに富むノジュールが溶解す ることにより、Fe,Mnともに高濃度を示したと考えられ る.

なお, Mn に対して Fe が高濃度の地点(萩4,萩5, 阿武3)及び Fe に対して Mn が高濃度の地点(萩2,萩8) の要因については,今後の検討課題である.

まとめ

山口県内の5地区40地点について,水質特性を明ら かにするとともに,地下水成分と地質との関係について 考察した.

イオン成分について、ヘキサダイアグラム及びトリリ ニアダイアグラムを用いて解析を行い、水質特性を把握 した.相島地区を除く多くの地点が一般的な浅層地下水 のタイプである I 型を示した.相島地区は、地質的影響 に加え、海水の混入や施肥の影響から、他地点とは異な る型を示した.

21 の金属成分について,濃度分布を把握した. Dsi を を除き概ねμg/L レベルであり, DSi は全地点が 5 mg/L 以上と他元素と比較して高濃度であった. 次いで Sr が中 央値 95 μg/L と高い値であった. 一方, Co, Ni, Cr, Ge, Se, Sb, Cd は中央値が定量下限値以下と低かった.

Sr, **B**, **As**, **V**, **Mn** については,より詳細に考察を行った.金属元素と地質との関係を見ると, **Sr** は,岩相が安山岩の地点に高い傾向が見られ,**V** は安山岩や玄武岩の地点に高い傾向が見られた.

As や Mn の地質からの溶出には, pH や酸化還元電位 が関係しており, As が 2 μ g/L 以上の地点は, pH がわ ずかにアルカリ側を示していた. Mn は 10 μ g/L 以上の 地点は, pH が中性よりわずかに酸性側を示し, Eh は低 濃度地点と比較して低い値であった. また, B は, 高濃 度地点の特徴として海水の影響が考えられた.

謝辞

地下水の金属分析法及び主要イオン解析についてご 指導・ご助言をいただいた福岡県保健環境研究所水質課 石橋融子氏に深謝いたします.

参考文献

1) 上水試験法. 2011 年度版

- 2) 石橋融子他. 湧水中の溶存態ケイ素濃度と水質,表 層地質との関係. 福岡県保健環境研究所年. 2012, 第 39 号, p59-65.
- やまぐちの島々一相島、山口県中山間地域づくり推 進課、2021.1.12.
 https://www.pref.yamaguchi.lg.jp/cms/a11500/island/ais hima.html
- 島田允堯.自然由来重金属斗による地下水・土壌汚 染問題の本質:ホウ素.応用地質技術年報.2013, No.32, p29-55.
- 5) 島田允堯. 自然由来重金属斗による地下水・土壌汚 染問題の本質:ヒ素. 応用地質技術年報. 2009, No.29, p31-59.
- ・● 奥水達司他.地球環境変化の健康への影響―地球科学より―.地球環境. 1997, vol 02, No.2, p215-220.
- 7) 角緑進他. 阿武単成火山群の K-Ar 年代のマグマ活 動史. 岩石鉱物科学. 2009, 29, p191-198.
- 小銭大祐,氏家治.阿武単成火山群,片俣地域の火 山岩類.日本岩石鉱物鉱床学会 学術講演会 講演 要旨集.2004,2004巻,セッション ID G5-05, p58.
- 9) 田崎和江.石川県金沢市の田畑におけるノジュールの形成.河北潟総合研究. 2015, 18, p29-42.

-89-